\int_{ }^{ }\ \frac{س\ +\ 1\ }{\left(2\ س\ +\ 1\right)3} ء س = .............................
ا) \frac{1}{2} [ ( 2 س + 1 ) -2 + ( 2 س + 1 ) -2 ] + ث
ب) \frac{1}{2} [ (2س + 1 ) -1 + ( 2 س + 1 ) -2 ] + ث
ح) \frac{1-}{2}\left[\frac{1}{1\left(2س\ +\ 1\right)}+\ \frac{\ 1}{4\ \left(2س\ +\ 1\ \right)2}\right]\ +\ ث\
ء) \frac{1-}{2}\left[\frac{\left(2س\ +\ 1\ \right)-1+\left(2س\ +\ 1\ \right)-2}{4}\right]\ +\ ث\
\int_{ }^{ }\ \frac{س\ +\ 1}{\left(2\ س\ +\ 1\ \right)2}\ ء\ س\ \ =\ \frac{1}{2}\ \int_{ }^{ }\ \frac{2\ س\ +\ 2}{\left(2\ س\ +1\right)3}\ ء\ س\
= \frac{1}{2}\int_{ }^{ }\ \frac{\ 2س\ +\ 1}{\left(2\ س\ +\ 1\right)3}+\frac{1}{\left(2\ س\ +\ 1\right)3}\ \ ء\ س\
= \frac{1}{2}\ \int_{ }^{ }\ \left(2س\ +\ 1\right)-2\ +\ \left(2\ س\ +\ 1\right)-3\ ء\ س\
= \frac{1}{2}\ \left[\frac{1}{2\left(2س\ +\ 1\right)}+\ \frac{1}{4\left(2س\ +\ 1\ \right)2}\right]\ +\ ث
= -\ \frac{1}{2}\left[\frac{1}{2\left(2\ س\ +\ 1\ \right)}+\ \frac{\ 1}{4\left(2\ س\ +\ 1\right)2}\right]+ث