بالعلم ترتقى الامم
الاحصاء
اذا كان س متغير عشوائي متقطع دالة التوزيع الاحتمالى له د حيث :
$د\ \left(س\right)=\ \frac{س}{10}\ ,\ س\ \ni\left\{1.2.3.ك\right\}$د (س)= س10 , س ∋{1.2.3.ك}
} أوجد قيمة ك
.............................................................................................................................
.............................................................................................................................
.............................................................................................................................
.............................................................................................................................
.............................................................................................................................
.............................................................................................................................
.............................................................................................................................
.............................................................................................................................
.............................................................................................................................
.............................................................................................................................
.............................................................................................................................
.............................................................................................................................
.............................................................................................................................
.............................................................................................................................
.............................................................................................................................
.............................................................................................................................
.............................................................................................................................
.............................................................................................................................
.............................................................................................................................
.............................................................................................................................
اذا كان س متغيرا عشوائيا متقطعا توزيعه الاحتمالى كالتالى :
-1 | 0 | 1 | 2 | 4 | |
2ل | ل | 3ل | 2ل | ل |
أوجد قيمة ل ثم أحسب المتوسط و التباين للمتغير
العشوائي س
...................................................................................................................................................
...................................................................................................................................................
...................................................................................................................................................
...................................................................................................................................................
...................................................................................................................................................
...................................................................................................................................................
عند دراسة العلاقة بين الكمية المعروضة ص وسعر سلعة ما س بالجنية كانت البيانات
كالتالى
السعر س | 10 | 12 | 15 | 12 | 14 | 8 |
الكمية ص | 6 | 8 | 6 | 6 | 9 | 5 |
أوجد معامل ارتباط بيرسون بين س ، ص مبينا نوعه.
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
اذا كان س متغيرا عشوائيا طبيعيا متوسطه $\mu\ =\ 45$μ = 45 وانحرافه المعيارى $\sigma\ =\ 5.$σ = 5.
اجب عن أحد المطلوبين التاليين فقط :
1- اوجد : $ل\ \left(31\leس\le50\right)$ل (31≤س≤50)
$2-اوجد:ل\ \left(س\geك\right)=\ \ 0.5675$2−اوجد:ل (س≥ك)= 0.5675
$.............................................................................................................................................$.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
قام إحصائي بدراسة العلاقة بين تقديرات مادتين دراسيتين لستة طلاب ودون النتائج الجدول التالي
المادة الاولى | ضعيف | مقبول | جيد جدا | ممتاز | جيد جدا | جيد | ||
|
8 | 7 | 9 | 7 | 6 | 9 |
أوجد معامل ارتباط الرتب لسبيرمان بين المادتين
...............................................................................................................................................
...............................................................................................................................................
...............................................................................................................................................
...............................................................................................................................................
...............................................................................................................................................
...............................................................................................................................................
...............................................................................................................................................
...............................................................................................................................................
...............................................................................................................................................
اذا كان ص متغيرا عشوائيا معياريا بحيث
$ل\ \left(ص\geل\right)$ل (ص≥ل) = .01980 فان قيمة ك = ...........................
ا- -0.85
ب- -0.73
ج- 0.85
د-0.73
.....................................................................................................................
.....................................................................................................................
.....................................................................................................................
.....................................................................................................................
.....................................................................................................................
.....................................................................................................................
اذا كان : $\Sigma\ س\ =\ 35\ \ ,\ \Sigmaص\ =\ 60\ ,\ \ \Sigma\ س\ ص\ =\ 187\ ,\ \Sigma\ س2\ =\ 134\ $Σ س = 35 , Σص = 60 , Σ س ص = 187 , Σ س2 = 134
$\Sigma\ ص2\ =\ 406\ ,\ ن\ =\ 10$Σ ص2 = 406 , ن = 10
اوجد معادلة انحدار ص على س
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
اذا كان س متغيرا عشوائيا متقطعا حيث $\Sigma\left(سر\ \times\ د\ \left(سر\right)\right)$Σ(سر × د (سر)) = 4
$\Sigma\left(س2ر\ \times\ د\ \left(سر\right)\right)$Σ(س2ر × د (سر)) = 25
فإن معامل الاختلاف له يساوي ..........
ا- 16%
ب- 75%
ج-64%
د- 15.6 %
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
اذا كان ا , ب ، حدثين مستقلين من فضاء العينة لتجربة عشوائية ، وكان ل (ا) = 0.2
= ( ب) ل= 0.6
اجب عن أحد المطلوبين التاليين فقط :
ا- اوجد : $ل\ \left(ا-ب\right)$ل (ا−ب)
2- اوجد : ل $ل\ \left(ا\cupب\right)$ل (ا∪ب)
..........................................................................................................
..........................................................................................................
..........................................................................................................
..........................................................................................................
..........................................................................................................
..........................................................................................................
..........................................................................................................
..........................................................................................................
..........................................................................................................
..........................................................................................................
..........................................................................................................
..........................................................................................................