اذا كان س متغيرا عشوائيا متقطعا حيث $\Sigma\left(سر\ \times\ د\ \left(سر\right)\right)$Σ(سر × د (سر)) = 4
$\Sigma\left(س2ر\ \times\ د\ \left(سر\right)\right)$Σ(س2ر × د (سر)) = 25
فإن معامل الاختلاف له يساوي ..........
ا- 16%
ب- 75%
ج-64%
د- 15.6 %
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................
..........................................................................................................................